Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
NPJ vaccines ; 8(1), 2023.
Article in English | Europe PMC | ID: covidwho-2238883

ABSTRACT

The current COVID-19 vaccines protect against severe disease, but are not effective in controlling replication of the Variants of Concern (VOCs). Here, we used the existing pre-clinical models of severe and moderate COVID-19 to evaluate the efficacy of a Spike-based DNA vaccine (pCTV-WS) for protection against different VOCs. Immunization of transgenic (K18-hACE2) mice and hamsters induced significant levels of neutralizing antibodies (nAbs) to Wuhan and Delta isolates, but not to the Gamma and Omicron variants. Nevertheless, the pCTV-WS vaccine offered significant protection to all VOCs. Consistently, protection against lung pathology and viral load to Wuhan or Delta was mediated by nAbs, whereas in the absence of nAbs, T cells controlled viral replication, disease and lethality in mice infected with either the Gamma or Omicron variants. Hence, considering the conserved nature of CD4 and CD8 T cell epitopes, we corroborate the hypothesis that induction of effector T-cells should be a main goal for new vaccines against the emergent SARS-CoV-2 VOCs.

2.
NPJ Vaccines ; 8(1): 15, 2023 Feb 13.
Article in English | MEDLINE | ID: covidwho-2238884

ABSTRACT

The current COVID-19 vaccines protect against severe disease, but are not effective in controlling replication of the Variants of Concern (VOCs). Here, we used the existing pre-clinical models of severe and moderate COVID-19 to evaluate the efficacy of a Spike-based DNA vaccine (pCTV-WS) for protection against different VOCs. Immunization of transgenic (K18-hACE2) mice and hamsters induced significant levels of neutralizing antibodies (nAbs) to Wuhan and Delta isolates, but not to the Gamma and Omicron variants. Nevertheless, the pCTV-WS vaccine offered significant protection to all VOCs. Consistently, protection against lung pathology and viral load to Wuhan or Delta was mediated by nAbs, whereas in the absence of nAbs, T cells controlled viral replication, disease and lethality in mice infected with either the Gamma or Omicron variants. Hence, considering the conserved nature of CD4 and CD8 T cell epitopes, we corroborate the hypothesis that induction of effector T-cells should be a main goal for new vaccines against the emergent SARS-CoV-2 VOCs.

3.
Nat Commun ; 13(1): 4831, 2022 08 17.
Article in English | MEDLINE | ID: covidwho-1991599

ABSTRACT

Both T cells and B cells have been shown to be generated after infection with SARS-CoV-2 yet protocols or experimental models to study one or the other are less common. Here, we generate a chimeric protein (SpiN) that comprises the receptor binding domain (RBD) from Spike (S) and the nucleocapsid (N) antigens from SARS-CoV-2. Memory CD4+ and CD8+ T cells specific for SpiN could be detected in the blood of both individuals vaccinated with Coronavac SARS-CoV-2 vaccine and COVID-19 convalescent donors. In mice, SpiN elicited a strong IFN-γ response by T cells and high levels of antibodies to the inactivated virus, but not detectable neutralizing antibodies (nAbs). Importantly, immunization of Syrian hamsters and the human Angiotensin Convertase Enzyme-2-transgenic (K18-ACE-2) mice with Poly ICLC-adjuvanted SpiN promotes robust resistance to the wild type SARS-CoV-2, as indicated by viral load, lung inflammation, clinical outcome and reduction of lethality. The protection induced by SpiN was ablated by depletion of CD4+ and CD8+ T cells and not transferred by antibodies from vaccinated mice. Finally, vaccination with SpiN also protects the K18-ACE-2 mice against infection with Delta and Omicron SARS-CoV-2 isolates. Hence, vaccine formulations that elicit effector T cells specific for the N and RBD proteins may be used to improve COVID-19 vaccines and potentially circumvent the immune escape by variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Nucleocapsid , Nucleocapsid Proteins , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL